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SUMMARY

Morphogenesis of wavy epidermal pavement cells
in plants has fascinated researchers for decades.
A mechanical mechanism had been proposed in
which the anticlinal cell walls, forming the in-plane
cell borders, feature contiguous stiff and soft zones
that generate waves upon stretching. We replicated
this model as designed and also expanded on it to
test its validity for three-dimensional (3D) cell geom-
etry. Our results suggest that both the assumptions
going into and the predictions arising from this
hypothesis do not stand closer scrutiny and may
misguide experimentalists. Unlike what the pub-
lished data seem to suggest, we observed that
only waves of negligible magnitude can be formed
by this anticlinal stretch model and that these are
virtually eliminated when full 3D geometry of the
cell is considered. Further, the model produces
cell wall stresses that do notmatch the experimental
evidence.

INTRODUCTION

‘‘Showing impossibility is the most powerful use of mathemat-

ical models: it allows hypotheses to be falsified’’ (Howard,

2014). In this study, we evaluate a mechanism recently pro-

posed by Majda et al. (2017) for the formation of wavy cell bor-

ders in plant leaf epidermis, a common phenomenon in many

plant species (V}ofély et al., 2019). Cells are physical objects.

These microscopic units comprise structural features and are

characterized by mechanical properties that are intimately

related to their function. This insight has led to a rapid evolution

of the field of cell mechanics and an increasingly interdisci-

plinary approach to biology. The mechanics lens to cell biology

has resulted in the recognition that nuclear mechanics plays a

role in intracellular signaling and mechanosensing (Dahl et al.,

2008; Fal et al., 2017) and that cytoskeletal mechanics is a

crucial element of cancer cell proliferation (Fife et al., 2014)

and gene expression (Fletcher and Mullins, 2010; Mouw

et al., 2014). Developmental biology, in particular, has gained

significantly from combining mechanical modeling, material

science, and novel imaging tools (Fayant et al., 2010; Hosseini

et al., 2017).
Dev
Cell mechanics or biomechanics involve the application of

mathematical, physical, and engineering concepts to biological

systems. However, this approach is not without challenges.

These arise from the highly complex and hierarchical organiza-

tion of biological structures and are compounded by the

complex mechanical properties that are typical for biomaterials.

In plant development, attention tomechanics has a long tradition

since the modulation of the cell wall mechanical properties and

the effect of the hydraulic pressure generated by turgor are cen-

tral to morphogenesis (Geitmann and Ortega, 2009; Lockhart,

1965). The emergent bio-mechanochemical properties of the

cell wall are, therefore, of fundamental importance to plant cell

and developmental biology (Bidhendi et al., 2019; Bidhendi

and Geitmann, 2016).

Mechanical models for plants span different length scales

from macromolecules to tissues and organs (Bidhendi and

Geitmann, 2018). A model is a simplified representation of a

system and focuses on the aspects vital to the phenomenon

being investigated. Every model is inherently limited by simpli-

fying assumptions and the quality of input parameters such as

the constitutive models and boundary conditions (Bidhendi

and Geitmann, 2018). These include also the geometrical as-

pects of the model. In the absence of feasible experimental

tests allowing the determination of exact values, one must

resort to educated assumptions to choose input parameters

for a model. Where assumptions are made, it is sensible to

test how sensitive the model outcomes are to the choice of

parameters and whether certain seemingly unimportant de-

tails can safely be neglected without substantially changing

the outcome. The suitability of a model can then be judged

by asking whether it facilitates our understanding of complex

phenomena and whether the predictions can be validated

experimentally. Importantly, impactful models guide biolo-

gists toward relevant new information or novel experimental

designs that benefit the quest for understanding biological

functioning.

Leaf pavement cells constitute the plant epidermis and repre-

sent a particularly intriguing cell type. The tabular cells consist of

two parallel periclinal walls connected by anticlinal walls lining

the perimeter (border) (Figure 1A). In many plant species, the

meandering borders (anticlinal walls) of these cells form inter-

locking protrusions (lobes) and indents (necks) that make the

tissue resemble a jigsaw puzzle (V}ofély et al., 2019). Because

of their complex shapes and their accessibility at the organ sur-

face, pavement cells have become amodel system for the inves-

tigation of cell development and morphogenesis in plants. The

peculiar jigsaw puzzle pattern has raised developmental and
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Figure 1. Finite Element Model of Geometrical Features in Plant Epidermal Pavement Cells

(A) Schematic view of a wavy pavement cell. The anticlinal walls (vertical) mark the cell borders. The two parallel periclinal walls enclose the cell at top and bottom.

(B) Description of pavement cell reduced to its lateral anticlinal walls without the periclinal walls.

(C) Anticlinal wall model consisting of a straight portion segmented into zones of elevated and decreased stiffness along and across the thickness of the wall.

(D) At one end of the anticlinal wall, fixed boundary conditions are used, and thewall is stretched at the other end. The lateral displacement (in the z direction) of the

node in the middle of the length and thickness of the second wall segment (red dot) is used to measure the lobe magnitude in all models.

(E) An anticlinal wall with 1, 10, and 100 mm dimensions in thickness, height, and length, respectively, is stretched. The material behavior is hyperelastic with

equivalent elastic moduli of EStiff = 100 kPa and ESoft = 50 kPa, and n = 0.3. Top view of the anticlinal wall shows the very small deformations formed in the length of

the wall. Close-up of the wall deformation andmaximumprincipal stress in the anticlinal wall shows thewaves are produced because of local moments generated

by the stress/strain mismatch due to material stiffness; a negligible deformation is generated, and stresses shift around the transition zones where stiffness

changes.

(F) Upper and lower periclinal walls are added at the two sides of the anticlinal wall. The entire structure is fixed at one end while stretched at the other along

the x direction. Symmetry boundary conditions are applied at free edges of the periclinal wall segments. Similar to the isolated anticlinal wall model, displacement

of the midpoint of the second segment of the wall in z direction was measured to determine the amplitude of the waves formed in the wall.
evolutionary questions. However, why and how exactly these

shapes have evolved has remained an intriguing riddle fueling

intense biological and mechanical research (Armour et al.,

2015; Bidhendi et al., 2019; Fu et al., 2005; Jacques et al.,

2014; Majda et al., 2017; Panteris and Galatis, 2005; Sampath-

kumar et al., 2014; Sapala et al., 2018).
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A recent paper by Majda et al. (2017) has proposed an inter-

esting concept for the mechanics underlying the formation of

the cell border undulations in pavement cells. The authors focus

on the anticlinal walls (Figure 1B) and propose that these are

stretched by ‘‘tissue-level forces’’ present in the epidermis,

causing waviness because of an alternate arrangement of



Figure 2. Simulation of Lobe Formation using a Finite Element Model Based on Alternating Stiff and Soft Regions in the Anticlinal Wall under

Axial Stretch

(A) Lobe magnitude normalized by wall thickness for linear elastic (green) and neo-Hookean hyperelastic (blue) models. Comparison between models is carried

out to ascertain that the results for the hyperelastic model are similar to the linear elastic model and to remain comparable with the study by Majda et al. (2017). In

(legend continued on next page)
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mechanical stiffness (Figure 1C). Experimental evidence to sup-

port this mechanical concept was provided based on atomic

force microscopy (AFM) indentation of resin-embedded anti-

clinal cell wall segments, which appeared to reflect a degree of

heterogeneity in the cell wall mechanical properties. Immunohis-

tochemical evidence was used to further corroborate material

heterogeneity along the anticlinal walls. The mechanical model

presented to support this notion focuses exclusively on the anti-

clinal walls of the pavement cells, neglecting the adjoining roof

and floor periclinal walls (Figure 1B). In this study, we focus on

the modeling aspects of the Majda et al. (2017) and do not

discuss the other aspects such as the AFM measurements.

We were intrigued by the proposed mechanism and decided

to reproduce and further analyze the model proposed by Majda

et al. (2017). The finite element method is a powerful mathemat-

ical approach that is widely applied to find solutions to mechan-

ical and structural problems with complex materials and

geometries (Baker, 2012). As with all modeling approaches,

simplifications and assumptions must be done sensibly. We,

therefore, wanted to test whether the proposed model can

generate waves, and we performed stress analysis and verified

whether the simplifying assumption of neglecting the periclinal

walls in a mechanical model of a pavement cell was justifiable.

This question arises from the fact that Majda et al. (2017)

did not make any attempt to reconcile their novel concept

with previously published works that emphasize the potential

importance of the periclinal wall or the spatial distribution of

microtubules (used as proxy for mechanical stress) or cellulose

microfibrils (Fu et al., 2005; Hamant et al., 2008; Panteris and

Galatis, 2005; Sampathkumar et al., 2014).

RESULTS

Alternating Placement of Regions with Different
Stiffness Produces Only Very Small Bends in the
Anticlinal Wall upon Stretching
To evaluate the results published by Majda et al. (2017), we

developed an isolated anticlinal wall model that, just like the

one described in that paper, exhibits alternating stiff and soft re-

gions along the wall and across the wall thickness (Figure 1C).

Just as in Majda et al. (2017), the finite element mesh was suffi-

ciently fine to represent the wall thickness by multiple volumetric

elements (N R 4). As mentioned in the STAR Methods section,
either case, wave amplitudes in the wall remain visually indiscernible. In a 1 mm thic

between the soft and stiff regions. Maximum lobe displacements are observed t

(B and C) Lobe magnitude normalized by wall thickness for different (B) heights

rameters are kept constant. Model results indicate that lobe magnitude is not se

(D) Lobe magnitude for different wall thickness values shows an increase in lo

magnitude remains the same when the lobe displacement is normalized by the w

(E) Increasing the number of wall segments within a given length of anticlinal wa

(F) Varying the compressibility of the elastic material by changing the Poisson’s

(G) Increasing the stiffness ratio between the soft and stiff regions along and acr

ratios as high as 100 times, the lobe displacement for a wall of 1 mm thickness re

(H) With the periclinal walls added to the anticlinal wall model or by reducing the nu

magnitude becomes virtually zero. Similarly, the lobe displacement in the anticlina

of theMajda et al. (2017), is negligible. As per default, all wall models incorporate fo

segment. Anticlinal wall thickness is always divided into two segments with varyin

ratio increases the lobe magnitude but that changing the absolute stiffness values

wall, the lobe magnitude remains negligible, compared to cell dimensions and e
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mesh sensitivity analysis was performed to ensure that results

are independent of meshing and elements used. The base di-

mensions used in the model were 1, 10, and 100 mm for thick-

ness, height, and length of the anticlinal wall, respectively. For

the default model used as the base of the parametric studies,

the anticlinal wall was divided into four segments along its length

and in two segments in its thickness. Majda et al. (2017) reported

using different stiffness ratios for soft and stiff zones with a range

of Young’s moduli. We used Young’s moduli of 100 and 50 kPa

for stiff and soft regions, respectively, and a Poisson’s ratio of

0.3, as outlined in their STAR Methods. We used the mentioned

dimensions and elastic constants as default values and explicitly

mention if any of these values were changed. Boundary

conditions were set to prevent displacement at one end of the

anticlinal wall while the other end was stretched (Figure 1D).

Movement perpendicular to force application was free for all

sections of the wall except for the edges at the two extremities.

We performed tests to rule out that the boundary conditions

(displacement or rotations) at the two extremities affect the

model results in any significant way. To consistently measure

the amplitude of the generated waves for all models, we

measured the lateral (in z direction) displacement of the middle

point in length and thickness, of the second segment of the anti-

clinal wall (Figure 1D).

Upon stretching, the anticlinal wall made a quantitatively

detectable but extremely small deformation. The very small

bends are formed by the moment generated by stresses arising

because of stiffness mismatch in adjacent segments (close-up

in Figure 1E). Unlike the pronounced deformations illustrated in

Figures 2G–2L of Majda et al. (2017), the wave amplitude in

our simulations did not surpass 0.1 times the wall thickness (Fig-

ures 2A and 2H). In other words, for an anticlinal wall of 1 mm

thickness, the amplitude of this curvature would be 100 nm,

significantly less than its own thinnest dimension. We tested

this model for axial strains up to 100% (which means stretching

the wall up to double its original length). We observed that

maximum wave amplitudes occur consistently at relatively small

strains (�1%) (Figures 2B and 2C). To reliably test models for

high deformation values, we used a hyperelastic formulation

that is better suited for large deformations. We calculated

the input parameters for neo-Hookean hyperelastic material

behavior based on Poisson’s ratio of 0.3 and the default Young’s

modulus values of 100 kPa and 50 kPa for stiff and soft regions,
k wall, the lobe displacement is close to 100 nm for a 100% stiffness difference

o occur at small strains (�1%).

and (C) lengths of the anticlinal wall, while other geometrical and material pa-

nsitive to these dimensions.

be magnitude at increasing thickness. However, the trend is linear, and the

all thickness.

ll results in increased lobe magnitude, but the trend approaches a plateau.

ratio does not change the lobe magnitude.

oss the anticlinal wall results in larger lobe displacements. However, even for

mains marginal.

mber of stiffness segments in the isolated anticlinal wall model to one, the lobe

l wall model, for 20% stiffness differences reported in the experimental section

ur segments along their length, except for themodel with a single anticlinal wall

g stiffness. Importantly, the results demonstrate that augmenting the stiffness

does not. However, even for extreme ratios and for the free isolated anticlinal

ven compared to wall thickness.



respectively. The hyperelastic model produced a deformation

matching the wave amplitude obtained using the linear elastic

model (Figure 2A). Details of the conversion between the neo-

Hookean hyperelastic material and linear elastic constants are

provided in the STAR Methods. From here onward, we use the

hyperelastic material model, but for ease of comparison be-

tween the results, we mention the linear elastic constants that

were used to calculate the input values for the hyperelas-

tic model.

We had constructed our model using exactly the specifica-

tions provided by Majda et al. (2017), but only obtained negli-

gible deformations that seemed to be nowhere near those

presented in that paper (e.g., Figures 2D and 2G in Majda et

al. (2017)). Since for some results presented in Majda et al.

(2017), the input parameters or the units for the outputs were

not explicitly stated, we performed a parametric study sweep-

ing the parameter space to take into account a wide range of

possible geometrical and material aspects of the model.

Specifically, we varied the values for the three dimensions of

the anticlinal wall, the number of wall segments within a given

anticlinal wall, and the stiffness and compressibility values for

the stiff and soft regions. Changing the height or length of the

anticlinal wall model when keeping all the other parameters

constant did not alter the wave amplitude significantly (Figures

2B and 2C). A nearly linear relationship was found between the

wall thickness and wave amplitude (Figure 2D). Therefore, if

the wave amplitude is normalized by the wall thickness, varying

this dimension is also inconsequential in terms of the potential

to generate more pronounced waves. In Majda et al. (2017), the

anticlinal wall models seem to include four or six segments

along the length (Figure 2G in that paper). We varied this num-

ber between 1 and 16 while keeping the other parameters at

their default values. With increasing number of segments, a

nonlinear increase in the lobe magnitude was observed (Fig-

ure 2E). However, the trend approached a plateau at values

higher than 10, suggesting that increasing the number of

contiguous regions per given length cannot generate wave

magnitudes beyond a fraction of the anticlinal wall thickness.

Therefore, the number of segments can also be ruled out as a

putative source of difference between our results and those

shown by Majda et al. (2017). Further, if the number of subre-

gions equals one, lobe displacement becomes virtually zero

(Figure 2E and 2H). Therefore, the modeling approach pre-

sented by Majda et al. (2017) does not seem to be able to

explain how first-order (C-shaped) bends in the cell walls are

generated, which are typical for early developmental stages

in the pavement cells.

We then investigated how the Poisson’s ratio of the material

affects the magnitude of the waves by varying it between

0 and 0.5. As shown in Figure 2F, the effect of Poisson’s ratio

on wave magnitude appears negligible. Varying the stiffness ra-

tio between the stiff and soft regions along and across the anti-

clinal wall, however, seemed to influence the lobe magnitudes,

since different wall deformations were obtained when varying

Young’s moduli for stiff and soft zones between 10 kPa to

1 MPa covering a range of 1.2 to 100 times stiffness ratios. How-

ever, for all values within the tested range, even for highly exag-

gerated stiffness ratio values, the bends in the anticlinal walls

remained negligible (Figure 2H). It should be noted that Majda
et al. (2017) report rather low stiffness differentials between

soft and stiff regions, as low as 20%, to be used as input of their

finite element model (e.g., see Figure 2I of Majda et al. (2017)), a

value that they deduce from their AFM indentation measure-

ments (e.g., see Table 3C and bar charts in Figures 3D and 4

ofMajda et al. (2017)). The outcome of a 20% stiffness difference

is included in the sweep of the parameter space shown in our

Figure 2H.

Interestingly, Majda et al. (2017) state, ‘‘.lowering the elastic

modulus favors the bending behavior of the wall,’’ and they

show this effect in their Figure 2I. To investigate how the abso-

lute or relative values of stiff and soft zones affect wave ampli-

tude, we maintained a stiffness ratio of 2, varying absolute

values of the elastic moduli on a range between 1 kPa to

10GPa. Our simulations showed that for a constant stiffness ra-

tio, no change in the lobe amplitude was generated by varying

the absolute values. Our results, therefore, suggest that the ab-

solute values are irrelevant and thus do not confirm those by

Majda et al. (2017) (Figure 2I in Majda et al. (2017)). In Figure 2H,

we present the maximum lobe magnitudes generated by

various input parameters. In all cases, the lobe displacement

or magnitude of bends generated by the anticlinal wall models

remained extremely shallow and did not surpass a fraction of

the cell wall thickness.

Addition of Periclinal Walls to the Stretch-Based
Anticlinal Wall Model Suppresses Any Small Bends
Even small deformations might represent an initial trigger that

could lead to undulation formation if enhanced by a subse-

quent amplification mechanism (Bidhendi et al., 2019). There-

fore, we tested whether the small deformations generated in

the anticlinal wall by the model proposed by Majda et al.

(2017), as outlined in the previous section, would hold once

the 3D structure of the plant cell is considered by adding the

periclinal walls. To this end, we added the upper and lower

periclinal walls to the finite element model, generating a partial

segment of two adjacent cells (Figure 1F). Along the z direc-

tion, symmetry boundary conditions were applied while the

walls were stretched along the x direction at one end. With

all parameters kept constant, the small deformations observed

earlier virtually disappeared (Figure 2H). Whether or not turgor

was applied to the periclinal walls did not affect the outcome.

Varying the boundary conditions, such as removing the sym-

metry constraint, did not significantly alter the observed lobe

displacements. In our hands, the model proposed by Majda

et al. (2017) is, therefore, unable to generate undulations

when the periclinal walls are included.

The Stretch-BasedModel Generates Unexpected Stress
Patterns in the Cell Wall
We are not aware of an experimental method that allows the

direct visualization of stress patterns at the cellular level.

However, the orientation of microtubules is thought to be a

good proxy in plant cells since these cytoskeletal elements

are shown to align along known stress fields (Hamant et al.,

2008; Landrein and Hamant, 2013). An additional opportunity

to validate a mechanical model is, therefore, to compare the

predicted stress patterns with the orientation of microtubule

arrays. Evaluation of the stress pattern in the anticlinal wall
Developmental Cell 50, 117–125, July 1, 2019 121



Figure 3. Stress Pattern in the Axially Stretched Anticlinal Wall

(A) Side view of the anticlinal wall showing the orientation of the maximum

principal stress upon application of tensile load in x direction (red arrows).

(B) Stiffer segments form the lobe (protrusion) sides of the undulations and

experience higher stresses. The resulting stresses correspond to 1%strain in a

model with a stiffness ratio of 100 kPa: 50 kPa between the adjacent seg-

ments. The heatmap represents the distribution of maximum principal stress.
model was not provided by Majda et al. (2017), but our simula-

tions allowed us to determine the same. As can be expected by

the application of a tensile load in x direction, the stretch-based

model predicts tensile stresses oriented along the long axis of

the anticlinal wall (Figure 3A). This is inconsistent with the

commonly observed orientation of microtubules underlying

the anticlinal walls of pavement cells, which is transverse to

the long axis of the anticlinal wall (in y direction in our coordi-

nate system or orthogonal to the plane of the leaf) (Belteton

et al., 2018; Bidhendi et al., 2019). While the actual stress

pattern in the 3D structure of the cell may be more complex,

the microtubule arrays seem to indicate that the predominant

stress or strain pattern in the anticlinal wall is perpendicular to

its long axis.

More important, however, is the side of the anticlinal wall at

which higher stresses are observed. Our simulations allowed

us to determine the location of elevated stresses, which in the

stretched anticlinal wall model, were at the lobe side of the

very small waves (Figure 3B). This, again, is inconsistent with

microtubule distribution, which shows marked accumulations

at the neck sides (Bidhendi et al., 2019; Fu et al., 2005; Sampath-

kumar et al., 2014).

DISCUSSION

Mechanical modeling of plant cells and tissues has allowed us to

investigate how cells deform in response to internal and external
122 Developmental Cell 50, 117–125, July 1, 2019
forces and how mechanical cues correlate with physiochemical

events at the subcellular level (Bidhendi and Geitmann, 2018).

Inevitably, modeling requires simplifications and assumptions

in the geometry, boundary conditions, and constitutive equa-

tions describing cells or tissue behavior. Examples for modeling

simplifications include considering the plant cell as a thin-walled

pressure vessel, assigning a linear isotropic elastic law to the

material or neglecting cellularity of the tissue by treating it as a

continuous material. Simplifications are performed because of

various reasons such as the lack of experimental data that would

be needed to inform an added complexity in the model or the

removal of irrelevant features to save modeling and computation

times. We acknowledge the necessity of such simplifications.

However, one must ascertain that simplifications and assump-

tions made in the modeling process are justifiable and do not

remove crucial features that have the potential to significantly

affect the model results.

One of the assumptions in the model proposed by Majda

et al. (2017) was the presence of ‘‘tissue-level’’ tensile stresses

that are assumed to drive the stretching of the anticlinal walls.

The concept of ‘‘tissue-level’’ forces in plants is introduced in

several previous studies (Baskin and Jensen, 2013; Hejnowicz

et al., 2000; Sampathkumar et al., 2014). In tissues such as the

plant hypocotyl, where a close physical interaction between

the epidermis and the densely packed internal layers exists,

stresses are suggested to arise because of differences in me-

chanical properties and growth mismatch between the layers.

Arguments for the presence of tensile forces in the epidermis

are based on experiments in which the epidermis is shown to

split open when cut. This behavior is attributed to forces of

the inner, densely packed tissues pressing against the outer-

most layer (e.g., refer to Kutschera and Niklas, 2007; Savaldi-

Goldstein et al., 2007). In the leaf, on the other hand, the

mesophyll differentiates into a sponge-like aerenchyma, which

can form large regions of limited contact between neighboring

mesophyll cells and at the border between the mesophyll cells

and the pavement cells of the epidermis, thus potentially

reducing the influence of the former on the latter in terms of

generating tissue-level stretch in the epidermis. Whether a tis-

sue in which cells are interspersed with a significant amount of

air space can exert forces in a centrifugal direction remains,

therefore, to be investigated. In other words, while Majda

et al. (2017) presume tensile forces in the epidermis to be a

globally applicable feature, this extrapolation from other plant

organs remains to be validated for the architecturally very

distinct leaf. The question becomes even more acute in leaves

lacking mesophyll such as in vitro grown mesophyll-less

Adiantum capillus-veneris or monolayer tissues such as fern

gametophytes, which nevertheless do have pavement cells

with wavy borders (Armour, 2013; Korn, 1976; Panteris et al.,

1994). We did not address the question of tissue forces any

further in the presentmanuscript but chose tomention it to illus-

trate that it would bemost helpful if modeling assumptions were

justified by some detail and if they were consistent with known

features and processes.

In their study, Majda et al. (2017) perfunctorily reject the

possibility of cell wall buckling, a mechanical morphogen

shown to be involved in shape formation of numerous cells

and organs (Nerurkar et al., 2017; Taber, 1995). Instead, the



authors propose that waves are generated in the anticlinal

walls of pavement cells upon stretching when alternatingly

located regions of elevated stiffness are distributed along

and across the walls. We first imitated the finite-element-

based modeling approach focusing solely on isolated anticlinal

walls as proposed by Majda et al. (2017). We showed that

stretching this wall is only able to produce near imperceptible

bends. The addition of periclinal walls virtually eliminates the

infinitesimally small bends formed upon stretching of isolated

anticlinal wall. We then performed a series of parametric

studies to explore the parameter space and to ascertain that

our results were not due to a particular choice of the model

input parameters. We varied elastic constants of the cell wall

zones, the number of the contiguous regions of stiffness vari-

ations, and the dimensions of the cell wall. Regardless of vari-

ation in input parameters, in the model developed based on

the concept proposed by Majda et al. (2017), we were unable

to simulate the generation of significant waves using a stretch-

based wave formation mechanism. Regrettably, direct and

quantitative comparison between our data for bend magni-

tudes and those presented by Majda et al. (2017) was impos-

sible since the graphs provided in that paper (Figure 2I of

Majda et al. (2017)) specify neither the units nor a definition

of how bending of the wall was measured. From their Fig-

ure 2G, it seems as if an amplitude of at least 3 times the

wall thickness was achieved in this way. Deformations in

none of our simulations come remotely close to such values.

If the stretching mechanism based solely on material inhomo-

geneities in the anticlinal wall is unable to produce the

observed waviness, especially once the complete geometry

of the cell is considered by addition of periclinal walls, the rele-

vance of the proposed model for pavement cell morphogen-

esis must be questioned.

We considered it necessary to further assess the other out-

puts of the model beyond the magnitude of lobe deformation,

specifically the stress state in the cell wall that accompanies

the deformation. Our reproduced model afforded us the op-

portunity to analyze additional aspects of the predictions

made by the finite element model proposed by Majda et al.

(2017). The authors did not report the stresses arising upon

load application, although this type of data is readily obtained

using the finite element method. Our reconstruction of their

model shows that in the very small bends that are created in

the isolated anticlinal wall model, stresses on the lobe side

of the anticlinal wall are more elevated than on the neck

side. This observation is of importance since it is challenging

to reconcile it with the available literature. Sampathkumar

et al. (2014) and Bidhendi et al. (2019) showed that periclinal

walls of pavement cells, when inflated by turgor, experience

elevated stresses at the location of necks. This is consistent

with the observed cytoskeletal polarization in these cells

(Armour et al., 2015; Bidhendi et al., 2019; Fu et al., 2005;

Zhang et al., 2011). The arrangement of plant microtubules is

known to be strongly driven by mechanical stress or strain

fields experienced at the cell wall level (Landrein and Hamant,

2013; Uyttewaal et al., 2012). The experimentally observed

accumulation of microtubules at necks is consistent with the

finite-element-based prediction of stress pattern predicted

by Sampathkumar et al. (2014) and Bidhendi et al. (2019) but
not with the stress pattern predicted by the anticlinal wall

model based on the concept proposed by Majda et al.

(2017). No attempt was made by Majda et al. (2017) to recon-

cile their proposed model with the contrasting and strikingly

different outcomes in terms of wall stress in Sampathkumar

et al. (2014) or with the morphogenetic concept proposed by

Panteris and Galatis (2005). The consequences of this incon-

sistency are even farther reaching. An accumulation of micro-

tubules is generally translated into an increased deposition of

cellulose microfibrils and hence a local stiffening of the wall.

This was shown to be the case by Sampathkumar et al.

(2014), where the predicted stress pattern in the periclinal

neck regions was shown to correlate with local patterns of

wall stiffening measured by indentation. The cortical microtu-

bules observed in the neck regions of periclinal walls are

thought to extend into the depth of the anticlinal wall (Panteris

and Galatis, 2005; Zhang et al., 2011). As we show in Bidhendi

et al., 2019, this does indeed translate into an accumulation of

cellulose microfibrils in the anticlinal wall, as is consistent with

predictions made by (Panteris et al., 1994 and Panteris and

Galatis, 2005). It, therefore, remains to be investigated how

this expected cellulose-based stiffening at the neck side can

be reconciled with the softer material in the same region that

Majda et al. (2017) propose to have observed experimentally.

Several considerations can be made, ranging from the reli-

ability of stiffness measurements of resin-embedded material

to a lack of sufficiently time-resolved data to correlate a spe-

cific side of a bend to observed wall stiffness heterogeneity.

Further studies are certainly warranted to investigate the

experimental aspect of Majda et al. (2017), but these are

beyond the scope of this paper.

Another limitation of themodel byMajda et al. (2017) is the fact

that the stretch-induced wave formation based on alternating

stiffness distribution is unable to produce pronounced first-order

bends (a simple curvature such as a C-shaped arc). This is the

case even if the isolated anticlinal wall model is considered in

the absence of periclinal walls (Figure 2H). It is important to

note that first-order bends are a common occurrence in early

stages of pavement shape formation and would, therefore,

remain inexplicable by the concept model proposed by Majda

et al. (2017). In summary, clearly, more research is warranted

to establish consistent mechanical models that explain the

morphogenesis of pavement cells.

The pavement cell case illustrates pitfalls of modeling when

focusing solely on a selected aspect of the cell geometry. The

overall shape and construction of the cell may be too relevant

to be neglected, and misleading predictions are bound to arise

through a reductionist approach without proper investigation of

the simplifying assumptions. Modeling relies on simplifications

and typically accounts only for features that matter for the

outcome. The simplifications and assumptions need to be eval-

uated prior to drawing conclusions, as ‘‘mathematical modeling

can be less useful or even misleading if used inappropriately, for

example, when a microscope is used to study stars.’’ (Ganusov,

2016). Predictions made by models that generate attractive

simulation outcomes only under conditions that are far removed

from the reality or oversimplified risk guiding biologists toward an

erroneous path resulting in a snowball effect that can become

hard to contain.
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(geitmann.aes@mcgill.ca).

METHOD DETAILS

Finite Element Modeling Procedures
To investigate the paradigm suggested by Majda et al. (2017), 3D models of the isolated anticlinal wall and combined anticlinal

and periclinal walls were developed. Default dimensions for the anticlinal wall were 1, 10 and 100 mm in thickness, height, and

length, respectively. We verified that the dimensions of the anticlinal or periclinal wall models do not affect the outcome. Neverthe-

less, throughout the study we specifically adopted geometrical and material inputs that would allow for our simulations to

remain comparable with those by Majda et al. (2017). By default, the anticlinal wall models were divided into four contiguous

regions (see Figure 2G of Majda et al. (2017)), along their length and into half in their thickness (Figure 1C). This allowed us to

assign alternating material properties along and across the anticlinal wall as done by Majda et al. (2017). We first used linear elastic

material behavior to study the model. For large deformations, we then used a hyperelastic model for the rest of the study. We

ascertained that the Neo-Hookean hyperelastic model produces the same deformations as the linear elastic model with input

parameters calculated from their linear elastic equivalents. Hyperelastic models are defined by strain energy potential functions.

Neo-Hookean hyperelastic material model is a simple hyperelastic model with the strain energy potential, U( 3), defined as (Abaqus

Theory Manual, 2018):

U = C10ðI1 � 3Þ+ 1

D1

�
Jel � 1

�2

WhereU is the strain energy per unit of reference volume.C10 and D1 are material parameters. I1 is the first deviatoric strain invariant:

I1 = l1
2
+ l2

2
+ l3

2
:

li are the deviatoric stretches, li = J�
1
3li. li are the principal stretches. J is the total volume ratio. Jel is elastic volume ratio. For cases

that the hyperelastic model was used, to calculate themodel parameters from the linear elastic parameters, the constantsC10 andD1

for the Neo-Hookean hyperelastic model can be calculated as:

C10 =
m0

2
and D1 =

2

K0

;

where m0 and K0 correspond to initial shear and bulk moduli, respectively. In many studies, the elastic parameters are given

in terms of Young’s modulus E and Poisson’s ratio n. If these values are provided, the initial shear modulus, m0 and the bulk

modulus are:

m0 =
E

2ð1+ nÞ and K0 =
E

3ð1� 2nÞ
It can be seen that for values of Poisson’s ration approaching 0.5, the bulk modulus takes large numbers.

For themodel boundary conditions, one end of the anticlinal wall structure was fixed, and the other endwas stretched. To present a

more realistic cell geometry, upper and lower periclinal walls were added on two sides of an anticlinal wall, representing two half cells.

In this case, the symmetry boundary conditions were applied to the free edges of the periclinal walls. The displacement boundary

conditions were also extended to encompass the periclinal walls cross-sections. As to whether the deformation was produced in

a force or displacement control approach, we did not observe a significant change in the outcome when either the force or displace-

ment boundary conditions were applied at the end of the wall that is pulled.
e1 Developmental Cell 50, 117–125.e1–e2, July 1, 2019
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Abaqus 2018 finite element package was used for the creation of the geometries, meshing and post-processing. Geometries were

discretized using second order, reduced integration hybrid C3D20RH solid finite elements and mesh sensitivity analysis was

performed for eachmodel. Mesh sensitivity analysis was carried out to ensure that the results do not depend on the type and number

of elements used in the model.

DATA AND CODE AVAILABILITY

Requests for data should be directed to, and will be fulfilled by, the Lead Contact, Anja Geitmann (geitmann.aes@mcgill.ca).
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